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Introduction

In this research project, we studied the Pontryagin Maximum Principle, which is commonly used in control theory, to find the best possible control and trajectory for a dynamic system.
The principle states that it is necessary for any optimal control along with the optimal state trajectory to solve the so-called Hamiltonian system, which is a two-point boundary value
problem, plus a maximum condition of the control Hamiltonian.

Basic Optimal Control Problem

Considering an ordinary differential equation (ODE){
ẋ(t) = f(x(t)) (t > 0),

x(0) = x0,
(1)

given the initial point x0 ∈ Rn and the function f : Rn →
Rn. Next, we generalize (1) into system (2) with some
function α : [0,∞) → A where A ⊂ Rm, such function α
is called a control.{

ẋ(t) = f(x(t), α(t)) (t > 0),

x(0) = x0.
(2)

Now, we have f : Rn × A → Rn and the control will act
on the solution x(·). We then define the cost functional

J [α(·)] :=
∫ T

0

r(x(t), α(t)) dt + g(x(T )), (3)

where r : Rn × A → R is called the running cost,
g : Rn → R is called the terminal cost, T > 0 is called
the terminal time, which are all given. The basic opti-
mal control problem is to find the optimal control for the
system to minimize the cost.

Pontryagin Maximum Principle

To find the optimal control for the problem, we can apply
Pontryagin Maximum Principle (PMP). Here gives the
definition of Hamiltonian in control theory.
Definition 1The Hamiltonian is the function

H(x, λ, a) := f(x, a) · λ + r(x, a) (x, λ ∈ Rn, a ∈ A).

Then we can proceed to the main theorem of PMP.

Theorem 1For a basic optimal control problem, as-
sume α∗(·) is the optimal control, and x∗(·) is the cor-
responding trajectory. Then there exists a function
λ∗ : [0, T ] → Rn, called the costate, such that

ẋ∗(t) = ∇λH(x∗(t), λ∗(t), α∗(t)), (4)

λ̇∗(t) = −∇xH(x∗(t), λ∗(t), α∗(t)), (5)

and

H(x∗(t), λ∗(t), α∗(t)) = max
a∈A

H(x∗(t), λ∗(t), a),

where 0 ≤ t ≤ T . In addition, the mapping

t 7→ H(x∗(t), λ∗(t), α∗(t))

is constant. Finally, we have the terminal condition

λ∗(T ) = ∇g(x∗(T )). (6)

Linear Quadratic Form

Linear quadratic form is a special form of control problem,
with linear ODE system and quadratic cost functional.
Here is an example in linear quadratic form: consider a
simple linear dynamics{

ẋ(t) = x(t) + α(t)

x(0) = x0,
(7)

with the quadratic cost functional

J [α(·)] =
∫ T

0

x(t)2 + α(t)2 dt, (8)

which we want to minimize. In this example, the ODE sys-
tem (7) is linear and the cost is a quadratic function. Lin-
ear quadratic form provides standard derivatives, which is
convenient for further derivations and substitutions.

Escaping Problem

Now we apply PMP to a realistic problem. Suppose au-
dience in a cinema need to escape from the cinema the-
ater through exit(s) when an emergency happens. We
aim to minimize the population cost during the escaping.
To simplify the mathematical model, we assume there is
no seats so agents can move freely. Initially, agents will
choose the nearest exit as their destinations. The control
of this problem is the velocity of agents. Considering the
advantage of linear quadratic form mentioned in previ-
ous section, we formulate the problem as followings:
The ODE system isẋ(t) =

dx(t)

dt
= v(t),

x(0) = x0.
(9)

where

x(t) = (x1(t), y1(t), x2(t), y2(t), · · · , xn(t), yn(t))T ∈ R2n,

v(t) = (u1(t), v1(t), u2(t), v2(t), · · · , un(t), vn(t))T ∈ R2n

are positions and velocities of agents at time t,

x0 = (x1(0), y1(0), x2(0), y2(0), · · · , xn(0), yn(0))T

is the initial positions. And the cost is defined as

J(v(t)) =
1

2

∫ T

0

[vT (t)Av(t)− xT (t)Qx(t)] dt

+
1

2
xT (T )x(T ) + bTx(T ) +K,

(10)

where the running cost consists of the energy expense
(vTAv) and disturbance from other agents, measured by
relative distances (xTQx), terminal cost is determined by
relative distances between terminal positions and posi-
tions of chosen exits for those who did not escape on or be-
fore the terminal time. Here, A,Q ∈ R2n×2n are positive
semi-definite matrices, b = −(a1, b1, · · · , an, bn)T ∈ Rn

and K = 1
2

∑n
i=1(a

2
i + b2i) are fixed by positions of exits

and the choices of agents, where (ai, bi) is the position of
i-th exit. By PMP, we define the Hamiltonian as

H = vTAv − xTQx + λTv,

where λ is the costate. Then we have

ẋ(t) = (
∂H

∂λ
)T = v(t), x(0) = x0, (11)

−λ̇(t) = (
∂H

∂x
)T = −Qx(t), λ(T ) = x(T ) + b, (12)

0 =
∂H

∂v
= Av + λT . (13)

By (13), we know that v = −A−1λ.
Now we arrive at a system of ODEs with boundary con-
ditions {

ẋ = −A−1λ, x(0) = x0,

λ̇ = Qx, λ(T ) = x(T ) + b.
(14)

By using forward and backward Euler’s method and
a substitution τ := T − t for the terminal condition, we
can solve system (14) for approximated solutions.

Simulation and Results

We simulate a two-agent case in a cinema theater with size
20 × 16. After placing the theater in the first quadrant,
the locations of two exits of the theater are (0, 16) and
(20, 16) respectively. Define Q = k3Q

0 and

Q0 =


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 , A =


k1 0 0 0
0 k1 0 0
0 0 k2 0
0 0 0 k2

 .

We run the simulations using different k1, k2, k3,x0, T .
Note that b depends on x0 and remains the same dur-
ing the escaping.

• k1 = 1, k2 = 2, k3 = 1.

x0 = (8, 7, 11, 7)T , T = 1.5,

b = (0,-16,-20,-16)T
x0 = (8, 7, 8, 4)T , T = 1.5,

b = (0,-16,0,-16)T
x0 = (6, 1, 11, 0)T , T = 1.5,

b = (0,-16,-20,-16)T

• k1 = 1, k2 = 4, k3 = 1.

x0 = (8, 7, 11, 7)T , T = 1.5,

b = (0,-16,-20,-16)T
x0 = (8, 7, 8, 4)T , T = 1.5,

b = (0,-16,0,-16)T
x0 = (6, 1, 11, 0)T , T = 1.5,

b = (0,-16,-20,-16)T

• k1 = 1, k2 = 4, k3 = 1.

x0 = (8, 7, 11, 7)T , T = 0.7,

b = (0,-16,-20,-16)T
x0 = (8, 7, 8, 4)T , T = 0.7,

b = (0,-16,0,-16)T
x0 = (6, 1, 11, 0)T , T = 0.7,

b = (0,-16,-20,-16)T

• k1 = 1, k2 = 2, k3 = 5.

x0 = (8, 7, 11, 7)T , T = 0.7,

b = (0,-16,-20,-16)T
x0 = (8, 7, 8, 4)T , T = 0.7,

b = (0,-16,0,-16)T
x0 = (6, 1, 11, 0)T , T = 0.7,

b = (0,-16,-20,-16)T

Conclusion and Discussion

In this research, we show the feasibility of PMP in solving
the escaping problem in linear quadratic form. Specifi-
cally, we simulated a two-agent case in a rectangle theater
and visualized the optimal trajectories of agents. In future
research work, we can consider the following extensions:

•We may increase the number of agents.

•We may change the optimization objectives.

•We may consider different geometries of the space, so
that the escaping problem can be discussed in other
public spaces, such as auditoriums and stadiums.

• Instead of assuming the escaping problem as a coopera-
tive game and minimizing the population cost, we may
solve aNash Equilibrium problem tominimize the in-
dividual costs. Agents amend their individual strategies
given others’ choices until an equilibrium is reached.
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